Al3011 | Spring 2025

MULTI-VIEW LEARNING FOR PARTIAL DATA MODALITIES IN GLIOBLASTOMA SURVIVAL PREDICTION

PROBLEM STATEMENT

GLIOBLASTOMA

The most aggressive kind of 'Glioma', a type of primary brain tumour

Approximately 250,000 new cases worldwide each year ¹

But Median Survival is about 12 - 15 months¹

Heterogeneity of the disease makes prognosis difficult

SURVIVAL PREDICTION

IS IMPORTANT

- ✓ Allows Physicians to make personalized treatment plans
- ✓ Allow patients to make informed informed about their quality of life
- ✓ Avoid ineffective treatments and cope with possible outcomes.

¹ Papacocea SI, Vrinceanu D, Dumitru M, Manole F, Serboiu C, Papacocea MT. Molecular Profile as an Outcome Predictor in Glioblastoma along with MRI Features and Surgical Resection: A Scoping Review. Int J Mol Sci. 2024 Sep 8;25(17):9714.

.....BUT THIS DOESNT ALWAYS WORK!

Studies show that Survival predictions by Physicians tend to be TOO OPTIMISTIC²

Survival Prediction is rather subjective!!

Varies with Physician Experience

.....BUT THIS DOESNT ALWAYS WORK!

Studies show that Survival predictions by Physicians tend to be TOO OPTIMISTIC²

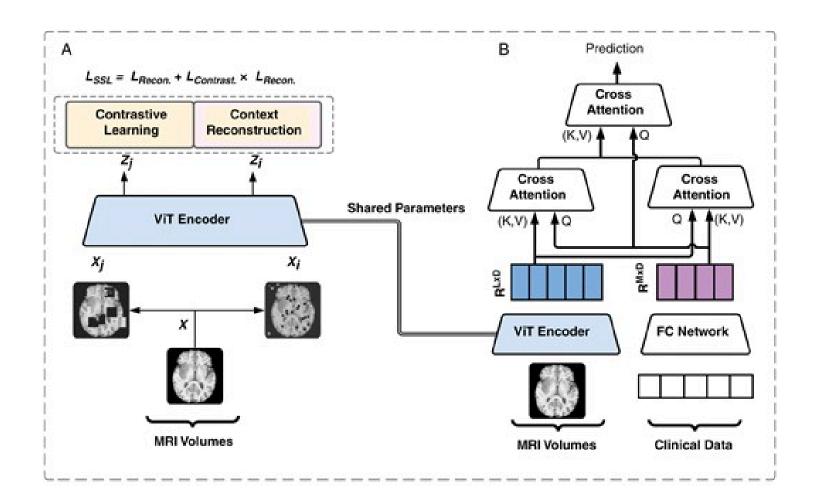
Survival Prediction is rather subjective!!

Varies with Physician Experience

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Comprehensive multimodal deep learning survival prediction enabled by a transformer architecture:

A multicenter study in glioblastoma



Ahmed Gomaa, Yixing Huang, Amr Hagag, Charlotte Schmitter, Daniel Höfler, Thomas Weissmann, Katharina Breininger, Manuel Schmidt, Jenny Stritzelberger, Daniel Delev, Roland Coras, Arnd Dörfler, Oliver Schnell, Benjamin Frey, Udo S Gaipl, Sabine Semrau, Christoph Bert, Peter Hau, Rainer Fietkau, Florian Putz, Comprehensive multimodal deep learning survival prediction enabled by a transformer architecture: A multicenter study in glioblastoma, Neuro-Oncology Advances, Volume 6, Issue 1, January-December 2024, vdae122, https://doi.org/10.1093/noajnl/vdae122

PAPER 1

METHODOLOGY

Model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with nonimaging data using cross-attention

OBSERVATIONS

The transformer model outperformed 3D-CNN-based models, improving survival prediction accuracy and distinguishing between favorable and unfavorable outcomes.

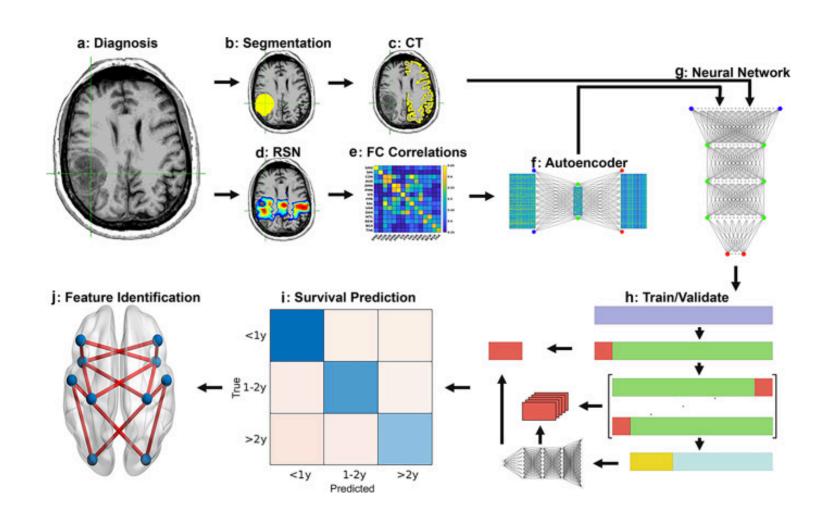
PERFORMANCE METRICS

- UPenn-GBM: Cdt = 0.707
- UCSF-PDGM (Imaging-only): Cdt = 0.578, (Multimodal): Cdt = 0.672
 RHUH-GBM: Cdt = 0.618

ANALYSIS

The model demonstrated superior performance in integrating multimodal data, showing better generalizability and potential clinical value for glioblastoma survival prediction. Yet it lacked interpretability.

Predicting survival in glioblastoma with multimodal neuroimaging and machine learning



Luckett PH, Olufawo M, Lamichhane B, Park KY, Dierker D, Verastegui GT, Yang P, Kim AH, Chheda MG, Snyder AZ, Shimony JS, Leuthardt EC. Predicting survival in glioblastoma with multimodal neuroimaging and machine learning. J Neurooncol. 2023 Sep;164(2):309-320. doi: 10.1007/s11060-023-04439-8. Epub 2023 Sep 5. PMID: 37668941; PMCID: PMC10522528.

PAPER 2

METHODOLOGY

A deep neural network was trained to classify GBM patient survival using demographics, cortical thickness (CT), and resting-state fMRI data from 133 patients. Permutation feature importance identified key survival predictors.

OBSERVATIONS

Strong demographic predictors included age and sex, while key CT predictors were the superior temporal sulcus and parahippocampal gyrus. Key FC predictors involved somatomotor, visual, and cingulo-opercular networks.

PERFORMANCE METRICS

- Accuracy: 90.6%
- Key CT predictors: Superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, middle temporal regions
 • Key FC predictors: Somatomotor, visual, cingulo-opercular networks

ANALYSIS

Machine learning effectively predicts GBM survival using neuroimaging data alone, revealing structural and functional brain changes linked to patient outcomes.

Current Models are Promising BUT LIMITED BY

POOR GENERALIZABILITY

Dependence on Complete Multimodal data ³

LACK INTERPRETABILITY

Black Box Problem ³

Our Goal is to tackle:

Patients with Partial Data Modalities are not able to utilise such models and the lack of interpretability of these models makes the adoption for those who do, difficult.

Allows Survival Predictions even in the absence of complete data

Allows Better Clinical adoption due to explainibility

Helps Identify Relevant Biomarkers and Patterns for Medical Research

DESCRIPTION OF THE DATASET

University of Pennsylvania Health System

630 Patients of de novo Glioblastoma

2006 - 2018

UPENN-GBM Dataset

Histopathology Images

Raw mpMRI Scans

Clinical Data

computationally annotated and manually refined by expert neuroradiologists

Radiomics

Tumour Segmented

Credit to Authors:

Bakas, S., Sako, C., Akbari, H., Bilello, M., Sotiras, A., Shukla, G., Rudie, J. D., Santamaría, N. F., Kazerooni, A. F., Pati, S., Rathore, S., Mamourian, E., Ha, S. M., Parker, W., Doshi, J., Baid, U., Bergman, M., Verma, R., Ha, S. M., & Davatzikos, C. (2022). The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics. Scientific Data, 9(1), 453. TCIA

WHY THIS DATASET?

ETHICAL CONCERNS

Largest, Most Comprehensive Publicly Available Dataset of GBM

Includes *diverse* multimodal data (imaging, tissue analysis, etc.)

Consistent acquisition protocols and well-recorded high-quality data

Data was collected with appropriate ethical approvals

*Informed Consent!

Personal Identification Data has been removed

Follows *strict compliance* with datasharing policies (HIPPA)

*Credit to Authors

DATA PRE-PROCESSING

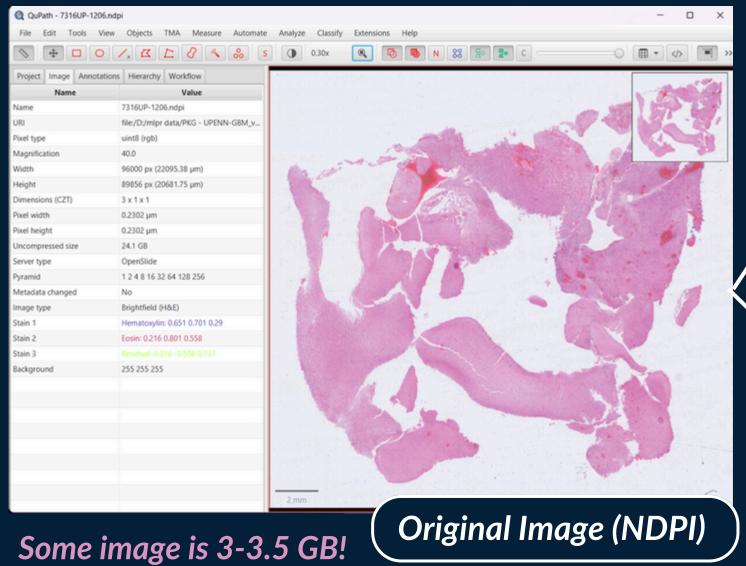
HISTOPATHOLOGY IMAGES DATASET

Data Type: Histopathology

Format: NDPI

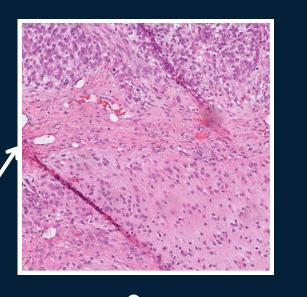
Size: 149 GB

Subjects: 34 (71 total slides)



Original Image (NDPI)

Pre-Processing: Tiling and Merging

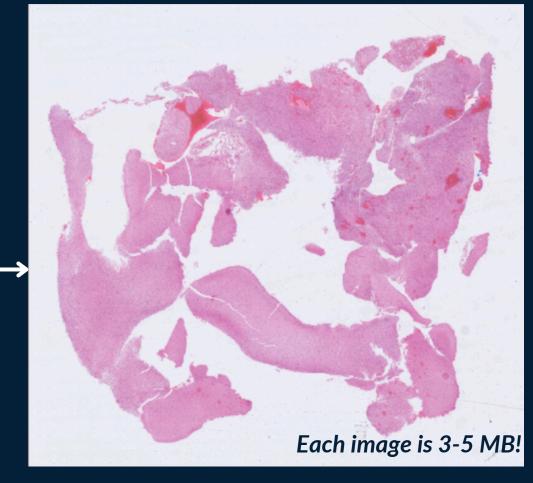


Split large images into smaller patches

→ Recombined tiles

Compressed

Preprocessed Image:



CLINICAL DATA C DATASET

Data Type:

Format: CSV

Size: *35 KB*

Subjects: 671

Demographics

Survival Data

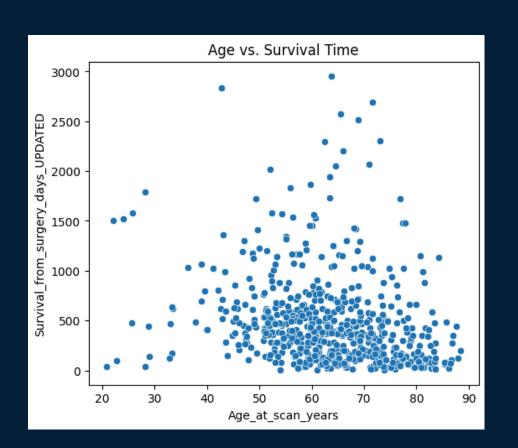
Time points

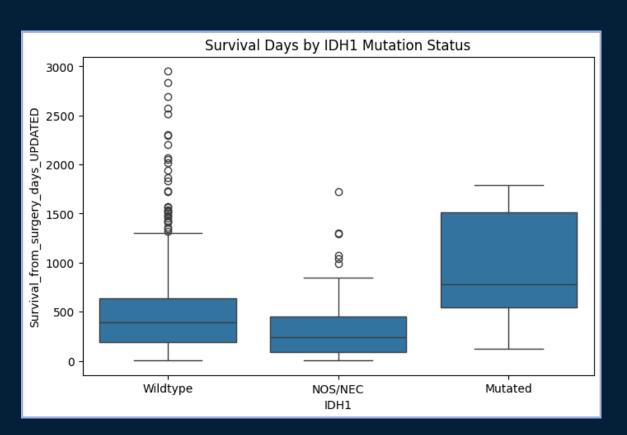
Clinical Factors

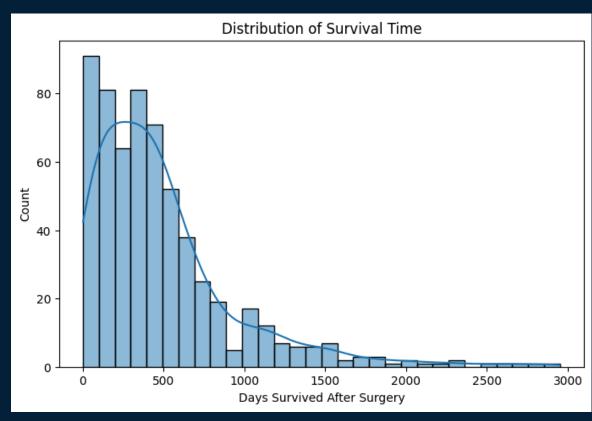
Genetics and Biomarkers

Pre-Processing:

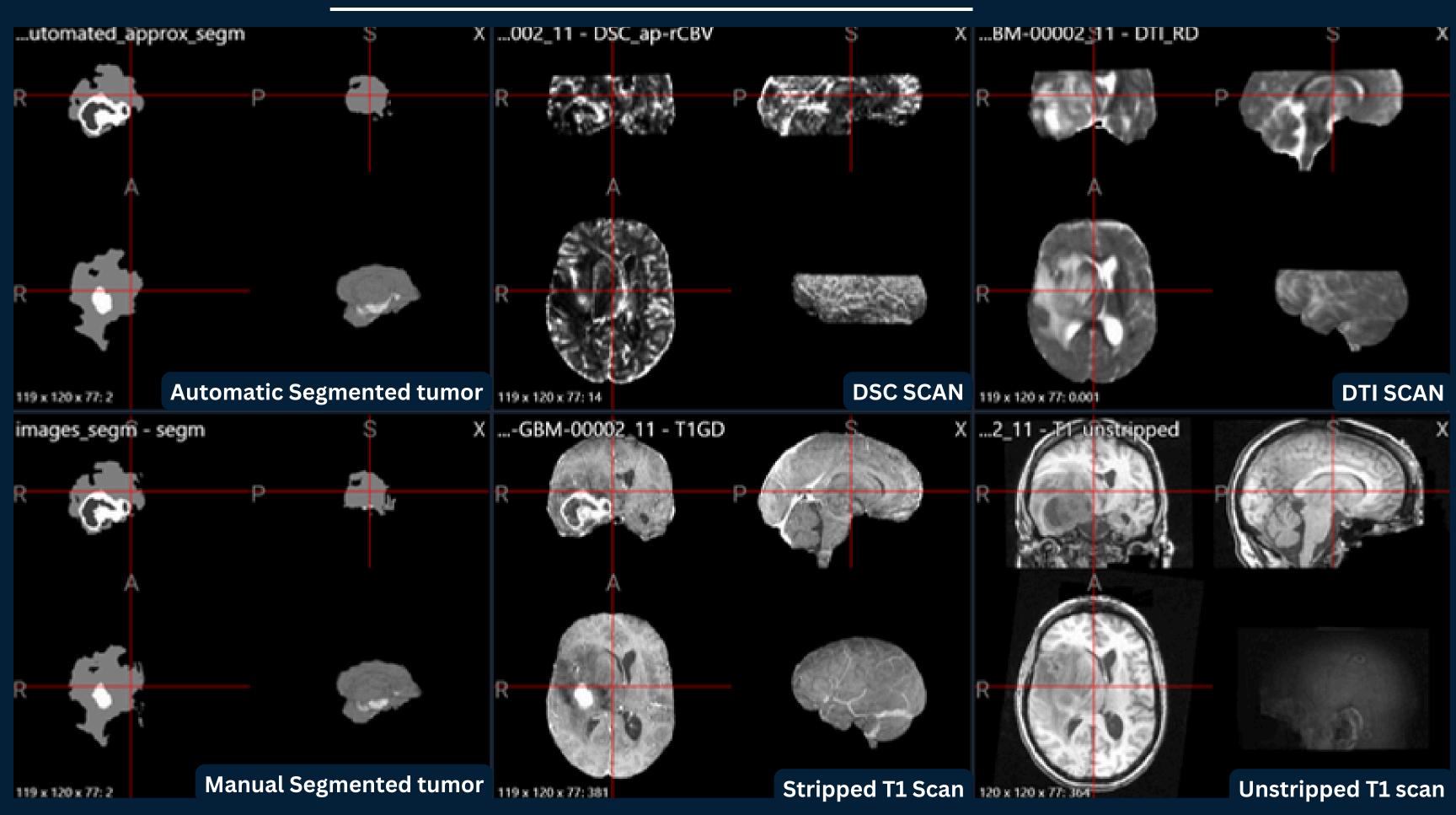
- Removing null values
- Outlier detection
- Correlation analysis
- Derived Summary Statistics







NIFTI IMAGES DATASET



NIFTI IMAGES DATASET

Data Type: 3D Brain Scans

Format: NIFTI

Size: 69.6 GB

Subjects: 671

Pre-Processing:

Features we extracted using SK-Image on NIFTI files

ensity, Std_Intensity, Min_Intensity, Max_Intensity, Voxel_Count, Volume_mm3, Bounding_Box, Surface_Area, C UPENN-GBM-00001_11_automated_approx_segm.nii.gz,2.097236614853195,0.47397845535189004,1,4,23160,23160,"(68, 83, 28, 109, 131, 71)",23160, UPENN-68M-00002_11_automated_approx_segm.nii.gz,2.2194647929436386,0.7901344227621007,1.4,200670,200670,"(51, 77, 30, 133, 185, 111)",200658, .0.0208628200492449 UPENN-GBM-00003_11_automated_approx_segm.nii.gz,2.006607538802661,0.758280687,1,4,67650,67650,7(86, 96, 79, 130, 186, 131)",67650,20 UPENN-G8M-00004_11_automated_approx_segm.nii.gz,1.842772340766886,0.8072002930234208,1,4,56097,56097,"(91, 71, 55, 135, 158, 115)",55812,4 UPENN-GBM-00005_11_automated_approx_segm.nii.gz,2.3334606355375334,8.8417906382729399,1,4,89027,89027,"(78, 140, 62, 121, 207, 137)",83778, UPENN-G8M-00006_11_automated_approx_segm.nii.gx,2.057661836305494,0.7173122650275039,1,4,69422,69422,"(58, 82, 28, 115, 154, 83)",69422,2 0.011842272093318118.0. UPENN-GBM-00007_11_automated_approx_segm.nii.gz,2.632471607229661,1.0203493153802539,1,4,113145,113145,"(117, 126, 57, 175, 202, 128)",113145, UPENN-G8M-80008_11_automated_approx_segm.nii.gz,2.1989463794376216,8.6399619277182933,1,4,29882,29882,"(128, 147, 92, 131, 151, 95)",17, UPENN-G8M-00009_11_automated_approx_segm.nii.gz,2.310751659,0.7375359858650951,1,4,122223,122223,"(63, 122, 61, 119, 205, 137)",111772,3 UPENN-G8M-00010_11_automated_approx_segm.nii.gz,2.3456287701676914,0.8888434750291482,1,4,34647,34647,"(65, 74, 66, 108, 170, 109)",34630,1 4.0.013188025039732735. UPENN-G8M-80811_11_automated_approx_segm.nii.gz,2.2297733694711956,8.8077820969587965,1,4,184846,104046,"(126, 124, 55, 182, 200, 122)",184846 11_automated_approx_segm.nii.gz,2.031943558,0.8539297047669083,1,4,128414,128414,"(52, 83, 23, 116, 188, 91)",128414, UPENN-G8M-00013_11_automated_approx_segm.nii.gz,3.1950123321457933,1.1604174724871923,1.4,18245,18245,"(119, 172, 101, 146, 192, 130)",5025 .0.021004184100418412.0.0 UPENN-G8M-00015_11_automated_approx_segm.nii.gz,2.0271231463288806,0.23323749941449756,1,4,91103,91103,"(111, 65, 71, 116, 73, 85)",162, ,0.008522028,0.003886017,0.998 UPENN-GBM-80016 11 automated approx segm.nii.gz,2.2370715879132024,0.808042784,1,4,39448,39448,"(141, 114, 37, 186, 177, 88)",39446 UPENN-G8M-00017_11_automated_approx_segm.nii.gz,2.0534869087029084,0.3350202989086658,1,4,36551,36551,"(62, 81, 22, 106, 141, 70)",36550 7,0.005057241,0.00249302 UPENN-G8M-80018_11_automated_approx_segm.nii.gz,2.3512789820335502,1.029926822,1,4,176273,176273,"(56, 88, 33, 125, 207, 111)",176259,41 .0.028083538962200054.0.01 JPENN-GBM-00019_11_automated_approx_segm.nii.gz,2.3263142367193406,0.7991824708427009,1,4,54233,54233,"(140, 107, 39, 183, 178, 85)",54233, UPENN-GBM-00020_11_automated_approx_segm.nii.gz,2.417554621051633,1.012799074462447,1.4,31627,31627,~(55, 85, 57, 93, 127, 106)*,31627, UPENN-GBM-00021_11_automated_approx_segm.nii.gz,2.270945779489821,0.710087195,1,4,44651,44651,"(61, 137, 96, 62, 138, 98)",2, .0.011705971852415372.0.0054773 UPENN-G8M-00022_11_automated_approx_segm.nii.gz,2.1005763542061415,0.889057285,1,4,176801,176801,"(112, 87, 27, 183, 200, 104)" UPENN-G8M-80823_11_automated_approx_segm.nii.gz,2.2967938344675725,0.8752476111193991,1,4,135333,135333,"(55, 110, 60, 116, 191, 131)",135333, UPENN-G8M-09024_11_automated_approx_segm.nii.gz,2.105782913573474,0.48012104472511735,1,4,58327,58327," (117, 75, 25, 184, 144, 77)",58327,2 .0.011077137646175305.0 UPENN-G8M-00025_11_automated_approx_segm.nii.gz,2.937750556792873,1.3825069447401346,1,4,35920,35920,"(118, 104, 88, 151, 152, 137)",35920, UPENN-GBM-00026_11_automated_approx_segm.nii.gz,2.299800352774709,0.7744638817373666,1,4,51591,51591,"(123, 115, 87, 174, 163, 139)",51591, UPENN-GBM-00027_11_automated_approx_segm.nii.gz,2.515514984255033,1.0114328349910269,1,4,56526,56526,"(96, 117, 61, 148, 165, 94)",22748,6 .0.020342228,0.007772822,0.997

Feature	Meaning	Use Case
Mean Intensity	Average brightness of tumor	Identifies tumor type
Std Intensity	Variation in intensity	Measures heterogeneity
Min/Max Intensity	Range of intensities	Detects necrotic cores
Voxel Count	Number of voxels in tumor	Measures tumor size
Volume (mm³)	Tumor size in physical units	Tracks growth
Bounding Box	3D tumor dimensions	Assesses spread
Surface Area	Tumor surface size	Shape analysis
Compactness	Shape compactness	Classifies morphology
Contrast	Intensity variation	Detects heterogeneity
Dissimilarity	Local intensity difference	Differentiates solid vs soft tumors
Homogeneity	Uniformity of texture	Identifies structured tumors
Energy	Uniform intensity pattern	Measures structure
Correlation	Predictability of intensities	Detects organized structures
Entropy	Intensity randomness \downarrow	Measures tumor complexity

Features Extracted and Their Relevance

RADIOMICS DATASET

Data Type: Radiomics of the Tumour

Format: CSV

Size: 34 MB

Subjects: *671 (67 CSVs)*

Pre-Processing:

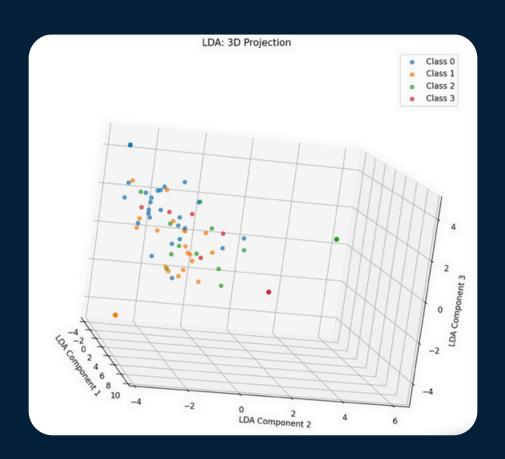
Removed duplicates and null values.

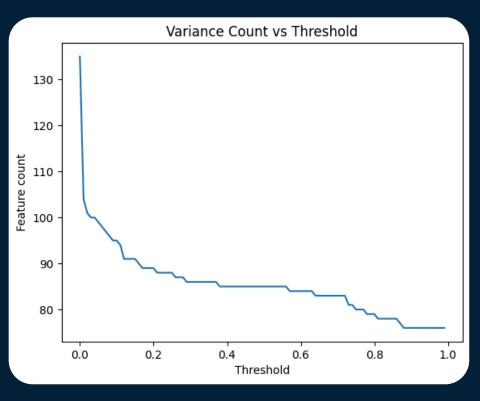
Imputed missing values using regression

Applied Z-score normalization.

Performed Linear Discriminant Analysis with 3 components.

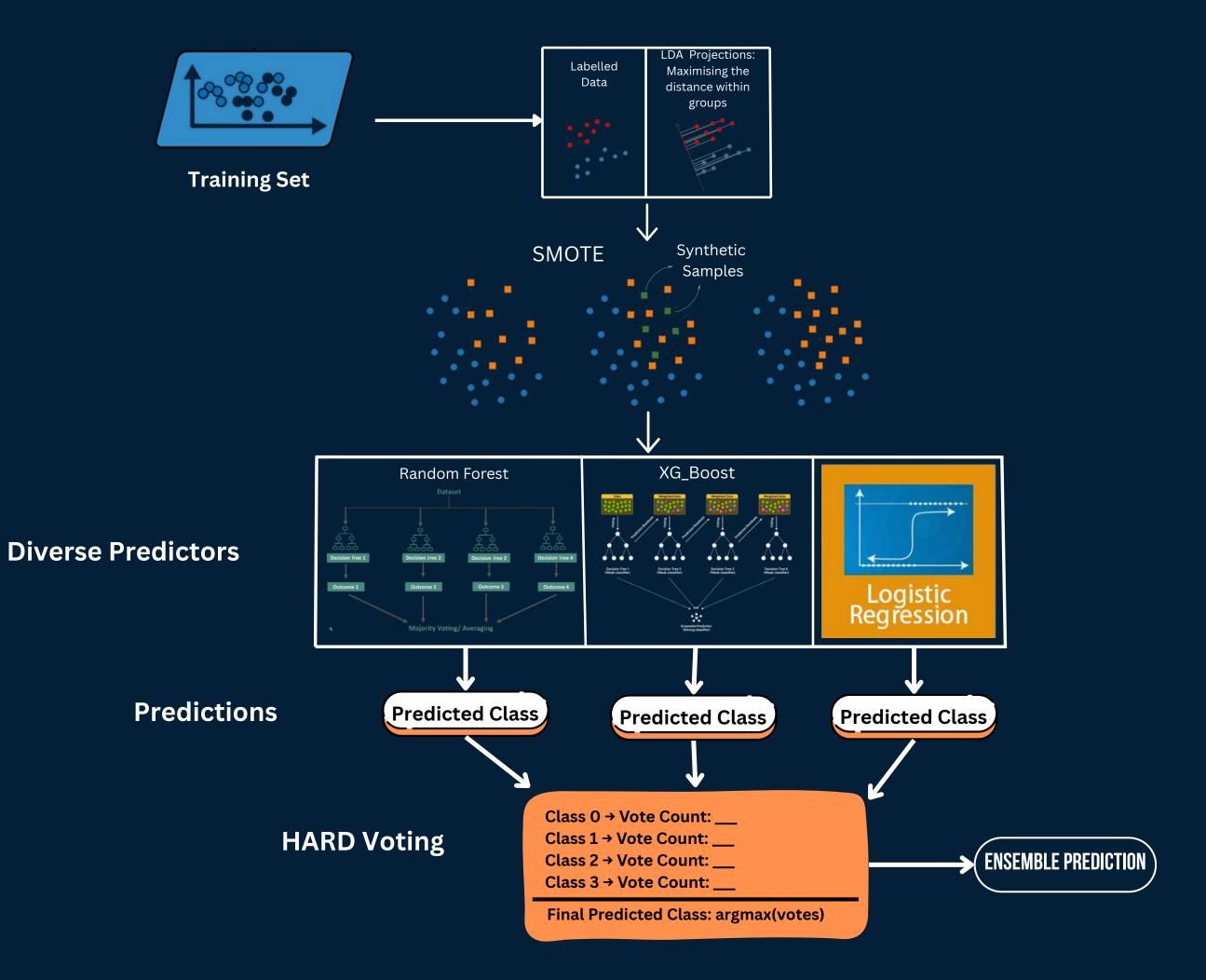
> Allowed us to pick 300 modalities out of, 9400 and map them along 3 final features.





OUR MODEL!

VOTING CLASSIFIER MODEL ARCHITECTURE



WHY THIS?

It fixes the natural imbalances in medical datasets by oversampling the under-represented classes.

In effect, boosted our balanced accuracy by 12%.

-WHY THIS?

It fixes the natural imbalances in medical datasets by oversampling the under-represented classes.

In effect, boosted our balanced accuracy by 12%.

LDA

Proved best for feature extraction compared to PCA, RF feature selection, and high-variance features.

Increased accuracy by 30% and c-index by 0.16.

WHY THIS?

It fixes the natural imbalances in medical datasets by oversampling the under-represented classes.

In effect, boosted our balanced accuracy by 12%.

LDA

Proved best for feature extraction compared to PCA, RF feature selection, and high-variance features.

Increased accuracy by 30% and c-index by 0.16.

HARD VOTING

Robust method for multiple modalities where different models perform uniquely for specific modality patterns.

Enhanced accuracy by 6% and balanced accuracy by 8%

>WHY THIS?

It fixes the natural imbalances in medical datasets by oversampling the under-represented classes.

In effect, boosted our balanced accuracy by 12%.

WHY THIS?

LDA

Proved best for feature extraction compared to PCA, RF feature selection, and high-variance features.

Increased accuracy by 30% and c-index by 0.16.

HARD VOTING

Robust method for multiple modalities where different models perform uniquely for specific modality patterns.

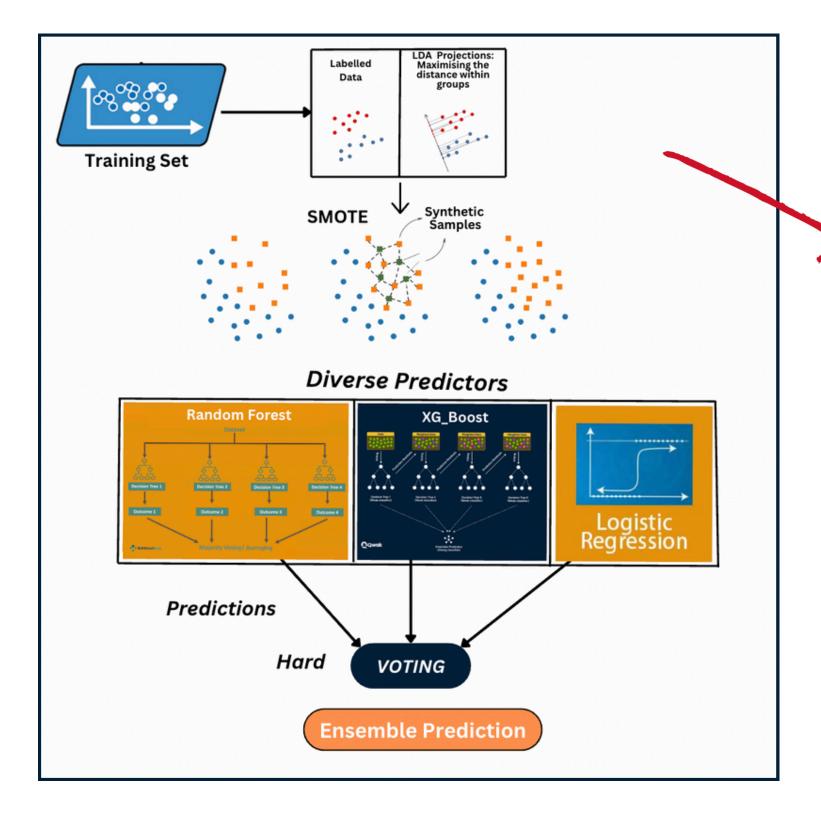
Enhanced accuracy by 6% and balanced accuracy by 8%

EXTERNAL VALIDATION

To check for high variance issues (over-fitting) and ensure generalizability.

Proved robustness of the model to new and fewer modalities.

Enhanced interpretability and generalization to inconsistency in modalities for survival prediction of GBM patients.



OUR SOLUTION

METHODOLOGY

- Train multiple Decision Trees on random subsets (Bootstrap Aggregation).
- Use majority voting (classification) or averaging (regression) for final prediction.

PERFORMANCE METRICS

- Accuracy: 97%
 Balanced Accuracy: 94%
 Concordance Index: 0.88
- f1-score: 0.94-0.97
- ROC-AUC: 0.99

EXPECTED OUTCOME

- Clinical Interpretability and feature contribution (Using SHAP)
- Accurate Prediction with Varying Modalities
- Generalizability across varying datasets
- Quantification of Feature Importance (LDA Coefficients)

INTERPRETABILITY ASPECTS

Using SHAP on RandomForest Classifier for Feature contribution mapping for each class.

```
Feature
                                                          Importance
                                                           17.927916
                                      Age at scan years
                                                           13.444819
                                                    MGMT
                                                           12.917231
                                                            8.627960
                                                  Gender
      T1GD NC Histogram Bins-16 Bins-16 MeanAbsolute...
                                                            6.333860
      T1 ET Histogram Bins-16 Bins-16 MeanAbsoluteDe...
                                                            6.306016
                              Time since baseline preop
                                                            6.056273
                                                           5.768656
4453
       T2 ED GLSZM Bins-16 Radius-1 GreyLevelVariance x
2896
            DTI TR NC Intensity MeanAbsoluteDeviation x
                                                            5.388300
1264
      DSC PSR NC GLCM Bins-16 Radius-1 AutoCorrelati...
                                                            5.248733
3184
             FLAIR ET Intensity MeanAbsoluteDeviation x
                                                            5.189719
3243
                                                            5.075271
              FLAIR ET Histogram Bins-16 Bins-16 Mode x
                                       GTR over90percent
                                                            5.037397
3733 T1GD ET GLSZM Bins-16 Radius-1 GreyLevelVarian...
                                                            4.960042
```

Cumulation of LDA Coefficient's magnitude to quantify importance of each feature with respect to others in the modalities used for prediction.

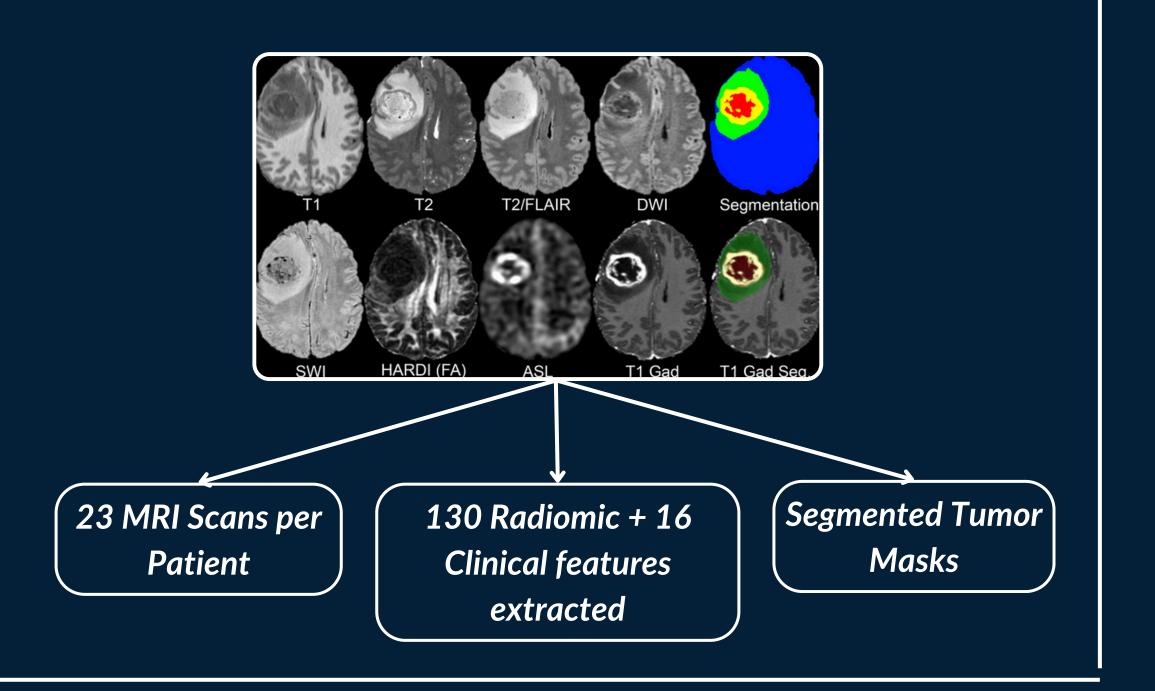
EXTERNAL VALIDATION DATASET

The University of California

San Francisco

495 Patients of de novo Glioblastoma

2015-2021



Credit to Authors:

Calabrese, E., Villanueva-Meyer, J., Rudie, J., Rauschecker, A., Baid, U., Bakas, S., Cha, S., Mongan, J., & Hess, C. (2022). The University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) (Version 4) [Dataset]. The Cancer Imaging Archive. DOI: 10.7937/tcia.bdgf-8v37

UCSF-PDGM (TCGA) Dataset Clinical Data Raw mpMRI Scans **Computational Radiomics** extraction methods with tumor segment as a mask for region of interest. Merged Dataset with **Radiomics** fewer modalities **Pre-processing and ML Model Inference Performance Metrics**

VALIDATION RESULTS

OBSERVATIONS

- Extraction of radiomics from raw MRI scans is
- computationally expensive.
 A mask was needed to limit the modalities to a specific region of interest.
- All papers with these datasets seems to have neglected the curse of dimensionality.
- LDA coefficient based importance was used to extract 94 features from a pool of 1678 features after stacking all various scans.

PERFORMANCE METRICS

- *Accuracy: 92%*
- Balanced Accuracy: 91.6%
- Concordance Index: 0.8658
- f1-score: 0.91
- ROC-AUC: 0.9710

DEPLOYABILITY & FUTURE CHALLENGES

Clinical $\mathbb{Q}_{\mathfrak{p}}$

Designed for deployability, the model uses lightweight ML algorithms (RF, XGBoost) that are fast to train and easy to export

Interpretability is enhanced through LDA and SHAP, enabling clinicians to visualize and understand key features.

Standardized preprocessing pipelines ensure consistent performance across institutions.

Good performance in accuracy and C-Index supports clinical adoption.

Demonstrates strong generalizability by performing well across diverse data types and modalities, even with partial inputs.

Highly compute expensive feature extraction method limits scalability

CHALLENGES FACED

Too Many Features, Not Enough Data!

We had a lot of features but relatively few data points, which could lead to overfitting.

So, we reduced the number of features using LDA and selected only the most useful ones.

Traditional ML Trade-offs

Models like Random Forest and XGBoost are easier to understand, but they might miss complex patterns.

We accepted this trade-off to keep things interpretable and used SHAP to add deeper insights.

Clinical Deployment Barriers

Real-world adoption needs validation, updates, and clinician trust.

Addressed through explainability tools (SHAP), standardized pipelines, and modular design for easy updates.

THANK YOU!