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MULTI-VIEW LEARNING FOR PARTIAL DATA

MODALITIES INGLIOBLASTOMA =,
SURVIVAL PREDICTION




i SN PROBLEM STATEMENT

/7Y GLIOBLASTOMA
) omersgeenas > SURVIVAL PREDICTION

tumour IS IMPORTANT
: v, Allows Physicians to make
Approximately 250,000 personaliged treatment plans

new cases worldwide each year *

v/ Allow patients to make informed
But Median Survival is informed about their quality of life

about 12 - 15 months*

v’ Avoid ineffective treatments
and cope with possible outcomes.

Heterogeneity of the disease
makes prognosis difficult

1 Papacocea S, Vrinceanu D, Dumitru M, Manole F, Serboiu C, Papacocea MT.
Molecular Profile as an Outcome Predictor in Glioblastoma along with MRI Features
and Surgical Resection: A Scoping Review. Int J Mol Sci. 2024 Sep 8;25(17):9714.




......... BUT THIS DOESNT ALWAYS WORK!

Studies show that Survival predictions by Physicians
tend to be TOO OPTIMISTIC ¢

4 )
C\ Survival Prediction is rather
subjective !!

Varies with Physician Experience

2 Islam M, Wijethilake N, Ren H. Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Comput Med
Imaging Graph. 2021b;91:101906.



......... BUT THIS DOESNT ALWAYS WORK!

Studies show that Survival predictions by Physicians
tend to be TOO OPTIMISTIC *

4 )
<\ Survival Prediction is rather
subjective !!

Varies with Physician Experience

ARTIFIGIAL IETELLIGENCE

MACHINE LEARNING
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Comprehensive multimodal deep learning
survival prediction enabled by a transformer
architecture: o

A multicenter study in glioblastoma
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Ahmed Gomaa, Yixing Huang, Amr Hagag, Charlotte Schmitter, Daniel H6fler, Thomas
Weissmann, Katharina Breininger, Manuel Schmidt, Jenny Stritzelberger, Daniel Delev,
Roland Coras, Arnd Dérfler, Oliver Schnell, Benjamin Frey, Udo S Gaipl, Sabine Semrau,

Christoph Bert, Peter Hau, Rainer Fietkau, Florian Putz, Comprehensive multimodal deep
learning survival prediction enabled by a transformer architecture: A multicenter study in

glioblastoma, Neuro-Oncology Advances, Volume 6, Issue 1, January-December 2024,

vdael22, https://doi.org/10.1093/noajnl/vdael22

PAPER 1

METHODOLOGY

Model employs self-supervised learning techniques to effectively
encode the high-dimensional MRI input for integration with
nonimaging data using cross-attention

OBSERVATIONS

The transformer model outperformed 3D-CNN-based models,
improving survival prediction accuracy and distinguishing
between favorable and unfavorable outcomes.

PERFORMANGE METRICS

e UPenn-GBM: Cdt=0.707
e UCSF-PDGM (Imaging-only): Cdt = 0.578, (Multimodal): Cdt = 0.672
e RHUH-GBM: Cdt =0.618

ANALYSIS

The model demonstrated superior performance in integrating
multimodal data, showing better generalizability and potential
clinical value for glioblastoma survival prediction. Yet it lacked
interpretability.




@ Springer

Predicting survival in glioblastoma with
multimodal neuroimaging and machine
learning

a: Diagnosis b: Segmentation

g Meural Network

@: FC Correlations
— . f: Autoencoder
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h: Train/Validate

Luckett PH, Olufawo M, Lamichhane B, Park KY, Dierker D, Verastegui GT, Yang P, Kim AH,
Chheda MG, Snyder AZ, Shimony JS, Leuthardt EC. Predicting survival in glioblastoma with
multimodal neuroimaging and machine learning. J Neurooncol. 2023 Sep;164(2):309-320.
doi: 10.1007/s11060-023-04439-8. Epub 2023 Sep 5. PMID: 37668941; PMCID:
PMC10522528.

PAPER 2

METHODOLOGY

A deep neural network was trained to classify GBM patient survival
using demographics, cortical thickness (CT), and resting-state fMRI
data from 133 patients. Permutation feature importance identified
key survival predictors.

OBSERVATIONS

Strong demographic predictors included age and sex, while key CT
predictors were the superior temporal sulcus and
parahippocampal gyrus. Key FC predictors involved somatomotor,
visual, and cingulo-opercular networks.

PERFORMANGE METRICS

e Accuracy: 90.6%

e Key CT predictors: Superior temporal sulcus, parahippocampal
gyrus, pericalcarine, pars triangularis, middle temporal regions

e Key FC predictors: Somatomotor, visual, cingulo-opercular networks

ANALYSIS

Machine learning effectively predicts GBM survival using
neuroimaging data alone, revealing structural and functional
brain changes linked to patient outcomes.







Current Models are Promising

BUT LIMITED BY
POOR GENERALIZABILITY LACK INTERPRETABILITY
Dependence on Complete Multi- Black Box Problem 3

modal data 3

le: Patients with Partial Data Modalities are not able to
oalis t0 tackl®  ytilise such models and the lack of interpretability of

our G these models makes the adoption for those who do,
difficult.
Allows Survival Allows Helps
Predictions even in the due to
explainibility for Medical Research

3 Poursaeed, R., Mohammadzadeh, M. & Safaei, A.A. Survival prediction of glioblastoma patients using machine learning and deep learning: a
systematic review. BMC Cancer 24, 1581 (2024). https://doi.org/10.1186/s12885-024-13320-4




DESCRIPTION OF THE DATASET

University of Pennsylvania [ UPENN-GBM j
Dataset
Health System
: Histopathology | "
630 Patients of [ Istopathology magesj [RGW mpMRI Scansj [ Clinical Data j

de novo Glioblastoma

computationally annotated and manually
refined by expert neuroradiologists

N N
2006 -2018 ( Radiomics j [ Tumour Segmentedj

Credit to Authors:

Bakas, S., Sako, C., Akbari, H., Bilello, M., Sotiras, A., Shukla, G., Rudie, J. D., Santamaria, N. F., Kazerooni, A. F., Pati, S., Rathore, S., Mamourian,

E., Ha, S. M., Parker, W., Doshi, J., Baid, U., Bergman, M., Verma, R., Ha, S. M., & Davatzikos, C. (2022). The University of Pennsylvania
glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics. Scientific Data, 9(1), 453. TCIA




WHY THIS DATASET ?2

Largest, Most Comprehensive
Publicly Available Dataset of GBM

Includes diverse multimodal data
(imaging, tissue analysis, etc.)

Consistent acquisition protocols
and well-recorded high-quality
data

*Credit to Authors

ETHICAL CONCERNS 47

Data was collected with appropriate
ethical approvals

Informed Consent!

Personal Identification Data has
been removed

Follows strict compliance with data-
sharing policies (HIPPA)




DATA PRE-PROCGESSING




HISTOPATHOLOGY IMAGES < DATASET

Data Type : Histopathology Pre-Processing : Tiling and Merging
Format : NDPI

. Split large
Size: 149 GB irﬁages ﬁnto —> Recombined tiles
Subjects: 34 (71 total slides) smaller patches l

Compressed

@ OuPath - T316UP-1206:d

Preprocessed Image :

Some image is 3-3.5 GB! Original Image (NDPI)

Each image is 3-5 MB!




CLINICAL DATA < DATASET

Data Type.:

Format : cSV Pre-Processing:
Size: 35 KB e Removing null values

Subjects: 671 e Outlier detection
e Correlation analysis

—( Demographics ) e Derived Summary
Statistics

—( Survival Data )

—( Time points j
—( Clinical Factors )

—( Genetics and Biomarkers )

Age vs. Survival Time
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NIFTI IMAGES < DATASET
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Data Type : 3D Brain Scans
Format : NIFTI

Size: 69.6 GB
Subjects: 671

Pre-Processing :

NIFTIIMAGES < DATASET

Features we extracted using
SK-Image on NIFTI files

File,
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Feature

Mean Intensity
Std Intensity
Min/Max Intensity
Voxel Count
Volume (mm?)
Bounding Box
Surface Area
Compactness
Contrast
Dissimilarity
Homogeneity
Energy
Correlation

Entropy

Meaning

Average brightness of tumor
Variation in intensity
Range of intensities
Number of voxels in tumor
Tumor size in physical units
3D tumor dimensions
Tumor surface size

Shape compactness
Intensity variation

Local intensity difference
Uniformity of texture
Uniform intensity pattern

Predictability of intensities

Intensity randomness J

Use Case

Identifies tumor type
Measures heterogeneity
Detects necrotic cores
Measures tumor size

Tracks growth

Assesses spread

Shape analysis

Classifies morphology
Detects heterogeneity
Differentiates solid vs soft tumors
Identifies structured tumors
Measures structure

Detects organized structures

Measures tumor complexity

Features Extracted and Their Relevance




RADIOMICS < DATASET

Data Type : Radiomics of the Tumour
Format: CcSVv
Size: 34 MB

Subjects: 671 (67 CSVs)

LDA: 3D Projection

Pre-Processing :
Removed duplicates and null values.

Imputed missing values using regression
Applied Z-score normalization. —

Performed Linear Discriminant Analysis
with 3 components.

0.4 0.6
Threshold




OUR MODEL!




LDA Projections:

Labelled Maximising the
Data distance within

groups

VOTING CLASSIFIER
MODEL ARCHITECTURE

Training Set

A\ 4
SMOTE Synthetic

Samples
- || - /; - ||
| / ; n
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Class O » Vote Count: __

HARD Voti ng Class 1~ Vote Count: __
Class 2 » Vote Count: __ m( ENSEMBLE PREDICTIUD
Class 3 » Vote Count: ___

Final Predicted Class: argmax(votes)



WHY THIS?



SMOTE

It fixes the natural
imbalances in medical
datasets by oversampling
the under-represented
classes.

In effect, boosted our
balanced accuracy by 12%.
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SMOTE

It fixes the natural
imbalances in medical
datasets by oversampling
the under-represented
classes.

In effect, boosted our
balanced accuracy by 12%.

LDA

Proved best for feature
extraction compared to PCA,
RF feature selection, and
high-variance features.

Increased accuracy by 30%
and c-index by 0.16 .
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SMOTE

It fixes the natural
imbalances in medical
datasets by oversampling
the under-represented
classes.

In effect, boosted our
balanced accuracy by 12%.

LDA

Proved best for feature
extraction compared to PCA,
RF feature selection, and
high-variance features.

Increased accuracy by 30%
and c-index by 0.16 .

HARD VOTING

Robust method for multiple
modalities where different
models perform uniquely for
specific modality patterns.

Enhanced accuracy by 6%
and balanced accuracy by
8%

“SWHY THIS?




SMOTE

It fixes the natural
imbalances in medical
datasets by oversampling
the under-represented
classes.

In effect, boosted our
balanced accuracy by 12%.

LDA

Proved best for feature
extraction compared to PCA,
RF feature selection, and
high-variance features.

Increased accuracy by 30%
and c-index by 0.16 .

“SWHY THIS? <

HARD VOTING

Robust method for multiple
modalities where different
models perform uniquely for
specific modality patterns.

Enhanced accuracy by 6%
and balanced accuracy by
8%

EXTERNAL VALIDATION

To check for high variance
issues (over-fitting) and
ensure generalizability.

Proved robustness of the
model to new and fewer
modalities.




OUR SOLUTION

METHODOLOGY

e Train multiple Decision Trees on random subsets (Bootstrap
Aggregation).

e Use majority voting (classification) or averaging (regression)
for final prediction.

PERFORMANCE METRICS

Accuracy: 97%

Balanced Accuracy: 94%
Concordance Index: 0.88
f1- score: 0.94-0.97
ROC-AUC: 0.99

EXPECTED OUTCOME

e Clinical Interpretability and feature contribution (Using SHAP)
e Accurate Prediction with Varying Modalities

e Generalizability across varying datasets

e Quantification of Feature Importance (LDA Coefficients)

Enhanced interpretability and generalization
to inconsistency in modadilities for survival
prediction of GBM patients.

<~ Samples

\l/ _Synthetic
. Ym -

®
o
XG_Boost
& .
[




INTERPRETABILITY ASPECTS

Survival_Censor -

DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-7_Probability_x -

DSC_ap-rCBV_ED_Intensity_Median_x [}

ipH1 [

DSC_ap-rCBV_ED_Intensity Maximum_x -

Feature Importancs

Age_at scan_years

IDH1

MGMT

Gender

T1GD NC Histogram Bins-16 Bins-16 MeanAbsolute...
Tl ET Histogram Bins-16 Bins-16 MeanAbsoluteDe...

DSC_ap-r‘EB\.-’_E D_l r1ter‘1sit3«'_r«’|ean_.'.u'. .
DSC_ap-rCBV_ED_Morphologic_EllipseDiameter_Axis-0_x .
DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-15_Probability_x .
Time_since baseline_preop .

DSC_ap-rCBV_ED_ Morphologic_EllipseDiameter Axis-1_x . T e preop

T2 ED GLSZM Bins-16 Radius-1 GreylLevelVariance x

2896 DTI TR NC Intensity MeanAbsoluteDeviation x
1264 DSC PSR _NC GLCM Bins-16 Radius-1 AutoCorrelati...
3184 FLAIR ET Intensity MeanAbsoluteDeviation x
3243 FLAIR_ET Histogram Bins-16 Bins-16 Mode x
7 GTR over90percent
8733 T1GD ET GLSZM Bins-16 Radius-1 GreylevelVarian...

DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-12_Probability_x [JJj

DSC_ap-rCBY_ED_Histogram_Bins-16_Bins-16_CoefficientOfVariation_x .

DSC_ap-rCBV_ED Histogram_Bins-16 Bins-16 Bin-3_Probability x .
DSC_ap-rCBY_ED_Wolumetric_Volume_x .

DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-11_Probability_x [JJ}

RSy [y I ) Q) R, B Sy B | i ) ) R

DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-5_Frequency x .

DSC_ap-rCBV_ED_Histogram_Bins-16_Bins-16_Bin-4_Frequency_x .

DSC_ap-rCBV._ED._Intensity_RootMeansquare_x [l class 0 Cumulation of LDA Coefficient’s magnitude to quantify
DSC_ap-1CBV_ED Intensity_Mode x [ C12%2 importance of each feature with respect to others in the
modalities used for prediction.

0.00 0.05
mean(|SHAP value|) (average impact on

Using SHAP on RandomForest Classifier
for Feature contribution mapping for
each class.




EXTERNAL VALIDATION DATASET

The University of California
San Francisco

495 Patients of
de novo Glioblastoma
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Credit to Authors:

Calabrese, E., Villanueva-Meyer, J., Rudie, J., Rauschecker, A., Baid, U., Bakas, S., Cha, S., Mongan, J., & Hess, C. (2022). The University of
California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) (Version 4) [Dataset]. The Cancer Imaging Archive. DOI: 10.7937/

tcia.bdgf-8v37



https://doi.org/10.7937/tcia.bdgf-8v37
https://doi.org/10.7937/tcia.bdgf-8v37

e
Dataset
0-B E')E(E'LICA;IIIE I!f radiomics from raw MRI scans is

computationally expensive.

e A mask was needed to limit the modalities to a specific

Computational Radiomics region of mt?r est.

extraction methods with e All papers with these datasets seems to have neglected the
tumorrg;g(meo'}tigiegggsk e curse of dimensionality.

e LDA coefficient based importance was used to extract 94

features from a pool of 1678 features after stacking all
various scans.

Merged Dataset with
fewer modalities DERFORMANCE METRICS

e Accuracy: 92%
Balanced Accuracy: 91.6%

Pre-processing and ML ° glo_r; f;g; ce!f"omgell ndex: 0.8658
Model Inference * ROC-AUC: 0.9710

Performance Metrics




DEPLOYABILITY & FUTURE CHALLENGES

{3} Technical

Designed for deployability, the model uses
lightweight ML algorithms (RF, XGBoost)
that are fast to train and easy to export

Interpretability is enhanced through LDA
and SHAP, enabling clinicians to visualize
and understand key features.

Standardized preprocessing pipelines
ensure consistent performance across
institutions.

Clinical s

Good performance in accuracy and C-
Index supports clinical adoption.

Demonstrates strong generalizability
by performing well across diverse data
types and modalities, even with partial
inputs.

Highly compute expensive feature
extraction method limits scalability




Too Many Features, Not
Enough Datal!

We had a lot of features but
relatively few data points,

which could lead to overfitting.

So, we reduced the number of
features using LDA and
selected only the most useful
ones.

CHALLENGES FAGED

(Traditional ML Trade-offsj

Models like Random Forest
and XGBoost are easier to
understand, but they might
miss complex patterns.

We accepted this trade-off to
keep things interpretable and
used SHAP to add deeper
insights.

Clinical Deployment
Barriers

Real-world adoption needs
validation, updates, and
clinician trust.

Addressed through
explainability tools (SHAP),
standardized pipelines, and
modular design for easy
updates.



THANK YOU!



